Synthese und Reaktionen von Komplexen mit $Co - CO_2R$ -Bindungen. Die Kristall- und Molekülstruktur von $C_5H_5Co(CO_2Me)_2PMe_3$

Helmut Werner*, Lothar Hofmann und Ralf Zolk

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 9. Oktober 1986

Die Verbindungen $C_5H_5Co(CO)PMe_3$ (1) und $C_5H_5Co(CO)$ - PMc_2Ph reagieren mit CH_2X_2 (X = Br, I) und KOH in Methanol zu den Bis(alkoxycarbonyl)cobalt-Komplexen C₅H₅Co(CO₂Me)₂-PMe₃ (2) und C₅H₅Co(CO₂Me)₂PMe₂Ph (9). Auf sehr ähnliche Weise sind $C_5H_5Co(CO_2Me)_2P(OMe)_3$ (10) und $C_5H_5Co(CO_2Et)_2$ -PMe₃ (11) erhältlich. Die Reaktionen von 2, 10 und 11 mit CF₃-SO₃Me oder CF₃SO₃H in Ether führen unter Abspaltung von ROMc bzw. ROH zu den Komplexsalzen [C₅H₅Co(CO₂R)- $(CO)L]PF_6$ (12-14). $[C_5H_5Co(CO_2Me)(CO)PMe_3]PF_6$ (12) reagiert mit KOEt zu C₅H₅Co(CO₂Me)(CO₂Et)PMe₃ (15), während mit KI, P(OMe)₃ und Isonitrilen CNR (R = Me, p-Tol, Ph) unter Verdrängung des CO-Liganden die Verbindungen C₅H₅- $Co(CO_2Me)(PMe_3)I$ (19) und $[C_5H_5Co(CO_2Me)(PMe_3)L]PF_6$ (20-23) gebildet werden. Aus 12 und NHEt₂ entsteht [C₅H₅Co-(CONEt₂)(CO)PMe₃]PF₆ (25). Die Kristall- und Molekülstruktur von 2 wurde bestimmt. Das Metall ist in 2 oktaedrisch koordiniert, und Bindungsabstände und -winkel der CO₂Me-Liganden sind mit denen von Essigsäure-methylester vergleichbar.

Der vorliegenden Arbeit lag die Frage zugrunde, ob es gelingt, einen Formaldehydcobalt-Komplex auf dem in Gl. (1) gezeigten Weg darzustellen.

$$[Co](CO) \xrightarrow{CH_2X_2} [Co] \xrightarrow{CH_2X} \xrightarrow{OH^-} (1)$$

$$[Co] \xrightarrow{CH_2OH} \xrightarrow{(Base)} [Co] \xrightarrow{CH_2} [Co] \xrightarrow{CH_2} (1)$$

$$[Co] \xrightarrow{CH_2OH} \xrightarrow{(Base)} [Co] \xrightarrow{CH_2} (CH_2) \xrightarrow{CH_2} (1)$$

Eine im Prinzip viel einfachere Synthesemethode, nämlich die Verdrängung eines substitutionslabilen Liganden L aus einer Verbindung $C_5H_3Co(PR_3)L$ durch CH_2O , wie sie z. B. von Berke für die Darstellung vergleichbarer Eisenkomplexe $Fe(\eta^2-CH_2O)(CO)_2L_2$ verwendet wurde², hatte zu keinem Erfolg geführt. Wir versuchten daher, auf ähnliche Weise wie im Fall der Thio- und Selenoformaldehyd-Cobaltverbindungen $C_5H_5Co(\eta^2-CH_2E)PR_3$ (E = S, Se)³³ zum Ziel zu kommen. Die dabei benötigten Vorstufen $C_5H_5CoCH_2X$ -(PR₃)X sind extrem reaktiv und eignen sich nicht nur zur Herstellung von $C_5H_5Co(\eta^2-CH_2E)PR_3$, sondern auch von zahlreichen Phosphor-ylid-Komplexen⁴. Im Hinblick auf die Realisierung der in Gl. (1) angegebenen Synthese war

Basic Metals, LX $^{\rm 1)}.$ – Synthesis and Reactions of Complexes Containing Co-CO₂R Bonds. The Crystal and Molecular Structure of C₅H₅Co(CO₂Me)₂PMe₃

The compounds C₅H₅Co(CO)PMe₃ (1) and C₅H₅Co(CO)PMe₂Ph react with CH_2X_2 (X = Br, I) and KOH in methanol to produce the bis(alkoxycarbonyl)cobalt complexes C₅H₅Co(CO₂Me)₂PMe₃ (2) and C₅H₅Co(CO₂Me)₂PMe₂Ph (9), respectively. Analogously, the compounds $C_5H_5Co(CO_2Me)_2P(OMe)_3$ (10) and C_5H_5Co -(CO₂Et)₂PMe₃ (11) have been prepared. Reactions of 2, 10, and 11 with CF₃SO₃Me or CF₃SO₃H in ether leads to abstraction of ROMe or ROH, respectively, with formation of the ionic complexes $[C_5H_5Co(CO_2R)(CO)L]PF_6$ (12-14). $[C_5H_5Co-$ (CO₂Me)(CO)PMc₃]PF₆ (12) reacts with KOEt to give C₅H₅Co-(CO₂Me)(CO₂Et)PMe₃ (15), whereas with K1, P(OMe)₃, and isocyanides CNR (R = Me, p-Tol, Ph) displacement of the CO ligand occurs with formation of the compounds C₅H₅Co(CO₂Me)- $(PMe_3)I$ (19) and $[C_5H_5Co(CO_2Me)(PMe_3)L]PF_6$ (20-23). [C₅H₅Co(CONEt₂)(CO)PMe₃]PF₆ (25) is obtained from 12 and NHEt₂. The crystal and molecular structure of 2 has been determined. The metal atom in 2 is octahedrally coordinated. The bond distances and angles of the CO₂Me ligands are very similar to those of methyl acetate.

allerdings zu bedenken, daß die entsprechende Carbenoidrhodium-Verbindung C₅H₅RhCH₂I(PMe₃)I mit SH⁻, SeH⁻ und TeH⁻ zwar auch zu C₅H₅Rh(η^2 -CH₂E)PMe₃ reagiert⁵), mit OH⁻ jedoch unter Isomerisierung den Ylid-Komplex C₅H₅Rh(CH₂PMe₃)I₂ ergibt⁶).

Mit Cobalt wird – wie die nachfolgenden Ausführungen zeigen – weder der eine noch der andere Reaktionsweg beschritten. Das leichtere Homologe des Rhodiums bildet in Alkoholen als Lösungsmittel bevorzugt Komplexe des Typs $C_5H_5Co(CO_2R)_2L$ ($L = PR_3$), aus denen ebenfalls sehr leicht kationische Vertreter mit $Co - CO_2R$ -Bindung hervorgehen. Cobaltverbindungen mit Alkoxycarbonyl-Liganden werden als Zwischenstufen bei der katalytischen Hydroformylierung diskutiert und für die Bildung der als Nebenprodukte stets auftretenden Ameisensäureester verantwortlich gemacht⁷). Sie spielen vermutlich auch bei der CO-Hydrierung in homogener Phase oder an Cobalt-Kontakten eine wichtige Rolle^{7,8}).

Darstellung der Komplexe C₅H₅Co(CO₂R)₂L

Die Umsetzung von $C_5H_5Co(CO)PMe_3$ (1) mit CH_2I_2 in Gegenwart von OH^- -Ionen führt nicht gemäß Gl. (1) zu $C_5H_5Co(\eta^2-CH_2O)PMe_3$. In Abhängigkeit vom Reaktions-

medium (THF oder ein Zweiphasensystem aus Benzol und wäßriger NaOH⁶) erfolgt lediglich die Bildung unterschiedlicher Mengen von $[C_3H_5Co(CH_2PMe_3)(PMe_3)I]I^{4}$ sowie von oligo- bzw. polymerem Formaldehyd. Bei der Einwirkung von NaOH auf Lösungen des Carbenoid-Komplexes $C_3H_5CoCH_2Cl(PMe_3)I$ findet langsame Zersetzung statt.

Einen gänzlich anderen Verlauf nimmt die Reaktion von 1 mit CH₂Br₂ oder CH₂I₂ und KOH in Methanol. Es entsteht zwar auch hier (CH₂O)_n, doch aus der Lösung kann in diesem Fall eine leuchtendgelbe, kristalline Verbindung der Zusammensetzung C₅H₅Co(CO₂Me)₂PMe₃ (2) isoliert werden. Sie besitzt ein sehr einfaches ¹H- und ¹³C-NMR-Spektrum (siehe Tab. 1) und zeigt eine intensive IR-Bande bei 1620 cm⁻¹, die der CO-Valenzschwingung einer Co-CO₂Me-Gruppe zuzuordnen ist⁹⁾. Da im Massenspektrum das Fragment-Ion [M - CO]⁺ mit wesentlich höherer Intensität als das Molekül-Ion auftritt und sich die C.H-Analysenwerte von 2 und der um eine CO-Gruppe ärmeren Verbindung nur geringfügig unterscheiden, nahmen wir ursprünglich für die nach Gl. (2) erhaltene Verbindung irrtümlicherweise die Formel C₅H₅(PMe₃)CoC(OMe)₂O an¹⁰. Durch die Röntgenstrukturanalyse (verbunden mit einer Überprüfung der spektroskopischen und analytischen Daten) wurde dieser Vorschlag jedoch widerlegt.

$$C_{5}H_{5}Co(CO)PMe_{3} \xrightarrow{CH_{2}X_{2}} C_{5}H_{5}(PMe_{3})Co CO_{2}Me$$

$$1 CO_{2}Me$$
(2)

Der Komplex 2 bildet sich nicht nur aus CH_2Br_2 und CH₂I₂, sondern auch (allerdings in schlechterer Ausbeute) bei den Umsetzungen von 1 mit anderen Dihalogenverbindungen wie z. B. CH₃CHBr₂, (CH₃)₂CBr₂ oder 1,2-C₂H₄Br₂. Ohne einen solchen Reaktionspartner, d.h. allein aus 1 und KOH/MeOH, entsteht der Bis(alkoxycarbonyl)-Komplex 2 nicht. Zur Erklärung des Reaktionsverlaufs gehen wir davon aus, daß über Zwischenstufen wie 3 und 4 oder 5 zunächst eine Verbindung des Typs 6 entsteht, die - wie untenstehend noch gezeigt wird - unter veränderten Bedingungen auch isolierbar ist. Gemäß Schema 1 kann sich dann aus 6 nach Austausch des Halogenids gegen OMe⁻ oder CO, d.h. über 7 oder 8 als Intermediat, das Produkt 2 bilden. Für beide Möglichkeiten gibt es Beispiele in der Literatur. So haben Palyi und Mitarbeiter erst kürzlich gezeigt¹¹, daß Cobaltverbindungen der allgemeinen Zusammensetzung $L_nCoI [L_n = (CO)_4, (CO)_3(PPh_3)]$ mit Alkoholat-Ionen zu L_nCo(OR) reagieren und in Gegenwart von CO unter Insertion die entsprechenden Alkoxycarbonyl-Komplexe liefern. Der postulierte Teilschritt $8 \rightarrow 2$ ist durch ein unabhängiges Experiment [siehe Gl. (7)] belegt.

Das für die Umwandlung von 6 nach 8 bzw. von 7 nach 2 benötigte Kohlenmonoxid könnte durch Zerfall der Zwischenstufe 3 oder 4 entstehen. Dies würde sowohl die verminderte Aubeute von 2 (ca. 25%) als auch die Bildung von $C_5H_5CoX_2(PMe_3)$ als Nebenprodukt erklären.

Nach dem für 2 verwendeten Syntheseprinzip können auch die entsprechenden Verbindungen 9 und 10 sowie der Bis(ethoxycarbonyl)-Komplex 11 hergestellt werden. Aufgrund der verminderten Acidität von Ethanol im Vergleich zu Methanol liegt das Gleichgewicht

$$EtOH + OH^- \Longrightarrow EtO^- + H_2O$$

stärker auf der linken Seite, so daß es von Vorteil ist, die für die Bildung von 11 benötigten Ethanolat-lonen durch Zugabe von KOtBu zu erzeugen. Ein nucleophiler Angriff von $OtBu^-$ auf eine der intermediär auftretenden Zwischenverbindungen (vgl. Schema 1) findet nicht statt.

9 und 11 sind gelbe Feststoffe, die in nahczu allen organischen Solvenzien gut löslich sind. 10 ist bei Raumtemperatur ein Öl, das aus Pentan bei -78 °C kristallisiert. Gegenüber CO oder PPh₃ sind die Bis(alkoxycarbonyl)-Komplexe 2, 9–11 unter Normalbedingungen inert. Sie unterscheiden sich damit von den aus L_nNiX₂, NaOR und CO in situ gebildeten Nickelverbindungen L_nNi(CO₂R)₂, die unter C-C-Verknüpfung Oxalsäurediester liefern¹².

Molekülstruktur von 2

Der Komplex, dessen Aufbau aus Abb. 1 zu ersehen ist, besitzt in Einklang mit den spektroskopischen Daten eine nicht-kristallographische Symmetrieebene, die durch C6, P, Co und C9 verläuft und den Abstand zwischen C1 und C2 halbiert. Durch die Koordination des Cyclopentadienylrings, des Phosphans und der beiden Methoxycarbonyl-Liganden ist das Metall oktaedrisch koordiniert; die Bindungswinkel C1-Co-C2, P-Co-C1 und P-Co-C2 weichen nur wenig von 90° ab (siehe Tab. 2). Die CoC(=O)O-Einheiten sind planar, was in Übereinstimmung mit einer sp²-Hybridisierung an den Methoxycarbonyl-Kohlenstoffatomen steht.

Abb. 1. Molekülstruktur von 2

Wie ein Vergleich der Strukturdaten von 2 und Essigsäure-methylester¹³⁾ zeigt, besteht nur ein sehr geringer Unterschied in den C=O, C-O- und O-CH₃-Abständen der beiden Verbindungen. Die Winkel Co-C1-O1 und Co-C2-O2 in 2 sind mit 129° (Mittelwert) jedoch deutlich größer als der entsprechende C-C-O-Winkel in CH₃CO₂Me [120 (4)°] und auch gegenüber anderen Metallkomplexen mit einer CO₂R-Einheit¹⁴⁻¹⁶⁾ um ca. 3° aufgeweitet. In der Verbindung C₅Me₅(CO)Rh(CO₂Me)₂, die das zu C₅H₅(PMe₃)Co isolobale Fragment C₅Me₅(CO)Rh enthält, sind die C-C- und C-O-Abstände in den CO_2 Me-Gruppen um 2-3 pm kürzer als in 2^{14} . Der um ca. 2.5 pm kürzere C = O-Abstand im Rhodiumkomplex [118.5 (6) pm] läßt darauf schließen, daß die Rückbindung vom Metall in unbesetzte p-Orbitale der CO₂Me-Liganden in diesem Fall schwächer als in 2 ist. Aufgrund der Rückbindung sind auch die Cobalt-Abstände Co-C1 und Co-C2 mit 191.2 (4) und 190.7 (4) pm deutlich kürzer als in strukturell verwandten Komplexen, in denen die Elektronendichte am Metall durch gute π -Akzeptor-Liganden wie z.B. CO in C₅H₅- $(CO)CoC(O)C(CO_2Et)C(OEt)O \quad [Co-C = 205.8 \quad (14)]$ pm]¹⁷ herabgesetzt ist.

Der Cyclopentadienylring von 2 ist annähernd planar. Der unterschiedliche *trans*-Einfluß der PMe₃- und CO₂Me-Gruppen führt zu etwas verschiedenen Co $-C(C_5H_5)$ -Abständen, wie sie auch in anderen Komplexen des Typs C₅H₅(PMe₃)CoXX' gefunden werden^{18–20}. Der kürzeste Co $-C(C_5H_5)$ -Abstand [208.2 (4) pm] ist in *trans*-Position zum PMe₃-Liganden, der offenbar eine geringere *trans*-dirigierende Wirkung als die CO₂Me-Gruppen ausübt.

Reaktionen der Komplexe C₅H₅Co(CO₂R)₂L mit Elektrophilen

Die von Angelici et al.²¹⁾ gemachte Beobachtung, daß die Eisenverbindung $C_5H_5(CO)_2FeC(=S)OMe$ mit CF_3SO_3Me

Tab. 1. ¹H-NMR- und IR-Daten der Komplexe⁴⁾ (NMR: δ in ppm, int. TMS; J in Hz. IR: v in cm⁻¹)

Kom- plex	δ(C ₅ H ₅)	J(PH)	δ(PMe ₃)	J(PH)	δ(L) ^{b)}	δ(OR)	$v(C \equiv X)^{c}$	v(C=O)
2	4.70 (br)		1.15 (d)	10.3		3.58 (s)		1620
9	4.73 (d)	0.5	.,		1.70 (d) ^{d)} 7.23 (m)	3.75 (s)		1619
10	5.06 (d)	0.8			3.61 (d) ^e	3.77 (s)		1618
11	4.89 (d)	0.3	1.32 (d)	10.8		$1.27 (t)^{n}, 4.32 (q)^{n}$		1613
12	5.80 (d)	0.8	1.83 (d)	12.4		3.71 (s)	2080	1675
13	5.77 (d)	0.7	1.82 (d)	12.0		1.17 (t) ⁹ , 4.18 (a) ⁹	2078	1680
14	5.89 (d)	0.8	()		3.91 (d) ^{g)}	3.72 (s)	2091	1671
15	4.86 (d)	0.4	1.28 (d)	10.7		3.77 (s) ^{h)} , 1.29 (t) ^{t,i)} 4.33 (q) ^{t,i)}		1618
19	5.03 (d)	0.6	1.78 (d)	11.2		3.60 (s)		1626
20	5.43 (br)		1.63 (d)	11.6	3.92 (d) ^{d)}	3.66 (s)		1628
21	5.43 (d)	0.5	1.71 (d)	12.0	3.58 (s, br)	3.65 (s)	2202	1628
22	5.64 (d)	0.5	1.82 (d)	11.8	2.40 (s) ^{j)}	3.71 (s)	2164	1632
23	5.65 (br)		1.83 (d)	12.1	7.60 (m)	3.74 (s)	2157	1630
25	5.83 (d)	0.5	1.82 (d)	12.0	. ,	k)	2048	1605

^{a) 1}H-NMR von 2, 9–11, 15 in C₆D₆, von 12–14, 19–23, 25 in (CD₃)₂CO; IR von 2, 9–11 in Pentan, sonst in KBr. – ^{b)} 9: L = PMe₃Ph; 10, 14, 20: L = P(OMe)₃; 21: L = CNMe; 22: L = CN-p-Tol; 23: L = CNPh. – ^{c)} 12–14, 25: X = O; 21–23: X = N. – ^{d)} J(PH) = 10.9 Hz. – ^{e)} J(PH) = 11.2 Hz. – ^h J(HH) = 7.0 Hz. – ^{e)} J(PH) = 11.8 Hz. – ^{h)} Signal der OCH₃-Protonen. – ⁱ⁾ Signal der C₆H₄-Protonen als AA'BB'-System, J(AB) = 9.0 Hz. – ^{k)} Signale der NC₂H₅-Protonen bei $\delta = 1.20$ (t) und 3.43 (q), beide etwas verbreitert, J(HH) = 7.1 Hz.

in Methanol sehr rasch zu einem Salz des Carben-Komplexes $[C_5H_5(CO)_2Fe = C(OMe)_2]^+$ reagiert (wobei intermediär ein Teilchen der Zusammensetzung $[C_5H_5(CO)_2-Fe = C(OMe)SMe]^+$ entsteht), veranlaßte uns, auch die Reaktivität der Verbindungen $C_5H_5Co(CO_2R)_2L$ (2, 9–11) gegenüber Elektrophilen zu untersuchen. Wir erwarteten, daß sich in analoger Weise nach elektrophiler Addition eines Methylcarbenium-Ions am C=O-Sauerstoffatom einer CO_2R -Gruppe ein Cobaltkomplex mit dem Liganden = C(OR)OMe bildet.

Die Umsetzungen von 2, 10 und 11 mit Methyltriflat nehmen jedoch einen anderen Verlauf. In etherischer Lösung entstehen sehr rasch gelbe, luftstabile Feststoffe, die ionisch aufgebaut sind und mit NH₄PF₆ zu den entsprechenden PF₆-Salzen umgefällt werden können. Elementaranalysen, Leitfähigkeitswerte und NMR-Daten (Tab. 1) belegen die Zusammensetzung $[C_5H_5Co(CO_2R)(CO)L]PF_6$ (12–14). Wir nehmen an, daß sich im Primärschritt der Reaktion der erwartete Carbenkomplex $\{C_5H_5Co[=C(OMe)OR]\}$ - $(CO_2R)L$ ⁺ bildet, der jedoch spontan Dimethyl- oder Ethylmethylether abspaltet und zu den kationischen Carbonylcobalt-Verbindungen reagiert. Bei Einwirkung von CF₃SO₃H auf 2, 10 und 11 und anschließendem Umfällen mit NH_4PF_6 erhält man ebenfalls die Komplexsalze 12-14, wobei in diesem Fall MeOH bzw. EtOH als Zweitprodukt entsteht.

$$C_{5}H_{5}(L)C_{0} \underbrace{CO_{2}R}_{CO_{2}R} \xrightarrow{1) R' X}_{2) NH_{4}PF_{6}} \begin{bmatrix} C_{5}H_{5}(L)C_{0} & CO_{2}R \\ (-NH_{4}X) & CO_{2}R \end{bmatrix} \stackrel{PF_{6}}{PF_{6}} + ROR'$$

$$(6)$$
2, 10, 11
12: L = PMe_{3}, R = Me
$$\begin{bmatrix} R' X = 13: L = PMe_{3}, R = Et \\ CF_{3}SO_{3}Me, \\ CF_{3}SO_{3}H\end{bmatrix}$$
* isoliert als Ether-Addukt

Reaktionen der Komplex-Kationen [C₅H₅Co(CO₂R)(CO)L]PF₆ mit Nucleophilen

Die Elektrophilie des CO-Kohlenstoffatoms in den Kationen von 12-14, die sich aus der hochfrequenten Lage der CO-Valenzschwingung ablesen läßt und wahrscheinlich durch eine nur schwache M-CO-Rückbindung bedingt ist, findet sich im Reaktionsverhalten der genannten Carbonyl-Komplexe vollauf bestätigt. Mit einer methanolischen Lösung von KOH reagiert 12 in Umkehrung der Bildungsreaktion zu der Bis(methoxycarbonyl)-Verbindung 2. In Ethanol als Solvens erhält man auf analoge Weise den Komplex 15, in dem sowohl eine Ethoxycarbonyl- als auch eine Methoxycarbonyl-Gruppe an das Metall gebunden ist. Die Darstellung einer Isopropoxycarbonyl- bzw. tert-Butoxycarbonylcobalt-Verbindung (durch Umsetzung von 12 mit KOH in iPrOH bzw. tBuOH) gelingt nicht, was wahrscheinlich auf eine sterische Behinderung der Addition der sperrigen OR-Gruppe am Carbonyl-C-Atom zurückzuführen ist.

Die Reaktionen von 12 mit KOH, NaSH oder $tBuNH_2$ in Tetrahydrofuran als Lösungsmittel verlaufen anders als diejenigen mit KOH in Methanol oder Ethanol und liefern übereinstimmend den Carbonyl-Komplex C₅H₃Co(PMe₃)-

CO (1). Wir nehmen an, daß auch hierbei zunächst ein nucleophiler Angriff von OH⁻, SH⁻ oder tBuNH₂ am CO-Liganden von 12 stattfindet und eine Zwischenstufe des Typs 16 entsteht, die nach Abspaltung von MeOH den Metalla-Heterocyclus 17 ergibt. Aus diesem könnte sich dann unter Eliminierung des Heteroallens X=C=O das stabile Endprodukt 1 bilden. Eine Verbindung C₅H₅(PMe₃)CoC-(NMe)N(Ph)CO (18) mit einem sehr ähnlichen Vierringgerüst, wie es in 17 vermutet wird, läßt sich bei Einwirkung von Phenylisocyanat auf C₅H₅Co(PMe₃)CNMe isolieren [Gl. (10)]²²; in diesem Fall tritt erst bei 60°C eine Fragmentierung in 1 und das entsprechende Carbodiimid ein.

Die Einwirkung von NaI auf 12 (in THF) führt zu einem raschen Austausch des CO-Liganden gegen Iodid [Gl. (11)]. Die so gelungene Darstellung des Neutralkomplexes 19 aus 2 über 12 ist die Umkehrung des in Schema 1 gezeigten möglichen Bildungswegs von 2 aus 1; dabei wird ein Teilchen der Zusammensetzung [Co](CO₂Me)X (6) als Zwischenstufe postuliert.

$$[Co] = C_5H_5(PMe_3)Co$$

Chem. Ber. 120, 379-385 (1987)

Ein Ligandenaustausch findet auch bei den Reaktionen von 12 mit Trimethylphosphit und Methyl-, p-Tolyl- und Phenylisonitril statt. Dabei bilden sich nach Gl. (12) die Komplexsalze 20–23, von denen 22 und 23 erst nach mehreren Reinigungsschritten vom anhaftenden Arylisonitril befreit und in kristalliner Form isoliert werden können. Die Eigenschaften von 20–23 (einschließlich der spektroskopischen Daten) sind denen der auf anderem Wege erhaltenen Verbindung $[C_5H_5Co(CO_2Me)(PMe_3)_2]PF_6^{23}$ schr ähnlich.

Mit Diethylamin reagiert 12 unter Substitution der Cgebundenen OMe- gegen eine NEt₂-Gruppe [Gl. (13)]. Möglicherweise erfolgt der nucleophile Angriff des Anions nicht am Kohlenstoffatom des CO₂Me-, sondern des CO-Liganden, so daß als Zwischenstufe der Komplex 24 entsteht. Durch protolytische Spaltung der C-OMe-Bindung könnte sich daraus das isolierte Produkt 25 bilden. Die Signale der CH₂- und CH₃-Protonen der Ethylgruppen sind im ¹H-NMR-Spektrum von 25 relativ breit, was eine Einschränkung der Drehbarkeit um die C-N-Bindungsachse andeutet. Es wäre denkbar, daß in Lösung aufgrund der Nachbarschaft des CO- und des CONEt2-Liganden am Cobalt eine rasche Übertragung der NEt₂-Gruppe von einem C-Atom auf das andere eintritt, wobei sich im Übergangszustand eine ähnliche Anordnung wie in 17 (mit X =NEt[†]) bilden könnte. Im Grundzustand von 25 liegt ein solcher Vierring mit Sicherheit nicht vor, wie am Auftreten zweier deutlich getrennter v(CO)-Banden für den CO- und den CONEt₂-Liganden im IR-Spektrum zu erkennen ist.

$$\begin{bmatrix} CO_2 Me \\ CO \end{bmatrix} \xrightarrow{PF_6} \frac{2 \text{ NHEt}_2}{-[Et_2 NH_2]PF_6} \begin{bmatrix} CO_2 Me \\ CONEt_2 \end{bmatrix}$$

$$12 \qquad 24 \qquad (13)$$

$$\xrightarrow{[Et_2 NH_2]PF_6} \begin{bmatrix} CO \end{bmatrix} \xrightarrow{CO} \\ CONEt_2 \end{bmatrix} \xrightarrow{PF_6} \begin{bmatrix} CO \end{bmatrix} = C_5H_5(PMe_3)CO$$

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung mit Personalund Sachmitteln. Frau Dr. G. Lange sind wir für die Aufnahme der Massenspektren, Herrn Dr. D. Scheutzow und Herrn Dr. W. Buchner für NMR-Messungen, Frau U. Neumann sowie Frau R. Schedl für Elementaranalysen und Fräulein I. Keupp für geschickte experimentelle Mitarbeit sehr zu Dank verbunden.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen C₃H₃Co(CO)L [L = PMe₃ (1), PMe₂Ph, P(OMe)₃] wurden nach Literaturangabe dargestellt²³⁻²⁵⁾. – NMR: Varian EM 360 L, Bruker Cryospec WM 400. – MS: Varian MAT CH 7 (70 eV). – IR: Perkin Elmer 457. – Äquivalentleitfähigkeit Λ in Nitromethan. – Schmelz- und Zersetzungspunkte mit DTA (Thermoanalyzer DuPont 990).

(Cyclopentadienyl)bis(methoxycarbonyl)(trimethylphosphan)cobalt(111) (2): Eine Lösung von 228 mg (1.0 mmol) 1 in 10 ml Methanol wird mit 280 mg (5.0 mmol) KOH versetzt und auf 0°C gekühlt. Nach Zugabe von 105 μ l (1.5 mmol) CH₂Br₂ wird 30 min bei 0 °C und 1 h bei Raumtemp. gerührt. Die flüchtigen Bestandteile werden i. Vak. entfernt, und der Rückstand wird zweimal mit je 25 ml Pentan unter Erwärmen und Rückfluß extrahiert. Die Pentanlösung wird heiß filtriert, i. Vak. auf ca. 5 ml eingeengt und auf -78 °C gekühlt. Es bilden sich leuchtendgelbe, luftempfindliche Kristalle, die mit kaltem Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 80 mg (25%), Schmp. 42 °C (Zers.). – MS: m/z (I_r %) = 318 (2; M⁺), 290 (18; M⁺ – CO), 259 (6; M⁺ – CO₂Me), 242 (2; M⁺ – PMe₃), 200 [100; C₅H₅Co(PMe₃)⁺], 135 [18; Co(PMe₃)⁺], 124 (37; C₅H₅Co⁺), 118 [1; (CO₂R) $\frac{1}{2}$]. – ¹³C-NMR (C₆D₅CD₃, -40°C): δ = 197.20 (d), J(PC) = 40.8 Hz, CO₂Me; 88.22 (s), C₅H₅; 51.47 (s), OCH₃; 17.00 (d), J(PC) = 33.4 Hz, PMe₃. C₁₂H₂₀COO₄P (318.2) Ber. C 45.30 H 6.33 Co 18.52

Gef. C 45.24 H 6.42 Co 19.16

(Cyclopentadienyl)(dimethylphenylphosphan) bis(methoxycarbonyl)cobalt(III) (9): Analog zu 2, ausgehend von C₅H₅Co(CO)-PMe₂Ph. Ausb. 24%, Schmp. 57°C (Zers.). – MS: m/z (I_r %) =380 (1; M⁺), 352 (15; M⁺ – CO), 321 (9; M⁺ – CO₂Me), 262[100; C₅H₅Co(PMe₂Ph)⁺], 242 (3; M⁺ – PMe₂Ph), 197 [12;Co(PMe₂Ph)⁺], 124 (75; C₅H₅Co⁺), 118 [2; (CO₂Me)[±]₂].

C₁₇H₂₂CoO₄P (380.3) Ber. C 53.70 H 5.83 Co 15.50 Gef. C 54.25 H 6.01 Co 15.32

(Cyclopentadienyl) bis (methoxycarbonyl) (trimethylphosphit) cobalt(111) (10): Eine Lösung von 552 mg (2.0 mmol) C₅H₅Co(CO)-P(OMe)₃ in 20 ml Methanol wird mit 337 mg (6.0 mmol) KOH versetzt und auf 0°C gekühlt. Hierzu wird tropfenweise eine Lösung von 1.523 g (6.0 mmol) Iod in 20 ml Ether zugegeben und nach 30 min Rühren bei 0°C und 1 h bei 25°C aufgearbeitet, wie für 2 beschrieben. Man erhält aus Pentan bei -78°C gelbe Kristalle, die bei ca. 3°C schmelzen. Ausb. 154 mg (21%).

 $\begin{array}{c} C_{12}H_{20}CoO_7P \ (366.2) \\ \text{Gef.} \ C \ 40.23 \\ H \ 5.03 \\ \text{Co} \ 16.05 \\ \end{array}$

(Cyclopentadienyl)bis(ethoxycarbonyl) (trimethylphosphan)cobalt(III) (11): Eine Lösung von 456 mg (2.0 mmol) 1 und 672 mg (6.0 mmol) KOtBu in 15 ml Ethanol wird tropfenweise mit 421 µl (6.0 mmol) CH₂Br₂ versetzt. Reaktionsführung und Aufarbeitung analog wie für 2 beschrieben. Ausb. 140 mg (20%), Schmp. 107°C (Zers.). – MS: m/z (I_r %) = 346 (2; M⁺); 318 (3; M⁺ – CO), 273 (3; M⁺ – CO₂Et), 270 (2; M⁺ – PMe₃), 200 [100; C₃H₅Co-(PMe₃)⁺], 146 [1; (CO₂Et)₂⁺], 135 [18; Co(PMe₃)⁺], 124 (40; C₅H₅Co⁺).

 $\begin{array}{cccc} C_{14}H_{24}CoO_4P \ (346.3) & \mbox{Ber.} \ C \ 48.56 & \mbox{H} \ 6.98 & \mbox{Co} \ 17.02 \\ & \mbox{Gef.} \ C \ 48.56 & \mbox{H} \ 7.21 & \mbox{Co} \ 16.87 \end{array}$

Darstellung der Komplexe $[C_5H_5Co(CO_2R)(CO)L]PF_6$ (12 bis 14): Eine Lösung von 0.30 mmol 2, 10 oder 11 in 10 ml Ether wird bei Raumtemp. gerührt und solange tropfenweise mit einer Lösung von CF₃SO₃H in Ether (1:20) versetzt, bis sich kein weiterer Niederschlag mehr bildet. Nach Abziehen des Solvens verbleibt ein gelbes Öl, dessen Lösung in 3 ml Methanol mit einem Überschuß (ca. 150 mg) NH₄PF₆ versetzt wird. Das langsame Auskristallisieren eines gelben Feststoffs wird durch Zugabe von 15 ml Ether vervollständigt. Nach zweimaligem Umkristallisieren aus CH₂Cl₂/Hexan erhält man hellgelbe, luftstabile Kristalle. Diese enthalten im Fall von 14 noch ein Molekül Ether pro Formeleinheit. Ausb. 78 mg (60%) 12; 63 mg (47%) 13; 70 mg (42%) 14 · OEt₂.

Carbonyl (cyclopentadienyl) (methoxycarbonyl) (trimethylphosphan)cobalt (III)-hexafluorophosphat (12): $\Lambda = 82 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1} - {}^{13}\text{C-NMR} [(CD_3)_2\text{CO}, -40^{\circ}\text{C}]: \delta = 94.44 \text{ (s), } C_5\text{H}_5; 56.03 \text{ (s), } \text{OCH}_3; 18.09 \text{ (d), } J(PC) = 36.5 \text{ Hz, PMe}_3; \text{ Signale für Co-CO und } CO_2\text{Me nicht genau lokalisiert.}$

 $\begin{array}{c} C_{11}H_{17}CoF_6O_3P_2 \ (432.1) \\ \text{Gef. C } 29.86 \\ \text{H } 4.05 \\ \text{Co } 13.37 \\ \end{array}$

Carbonyl(cyclopentadienyl)(ethoxycarbonyl)(trimethylphosphan)cobalt(III)-hexafluorophosphat (13)

$C_{12}H_{19}C_{0}F_{6}O_{3}P_{2}$ (446.1)	Ber.	C 32.31	H 4.29	Co 13.21
	Gef.	C 31.98	H 4.41	Co 13.47

Carbonyl(cyclopentadienyl)(methoxycarbonyl)(trimethylphosphit)cobalt(III)-hexafluorophosphat-Ether (14 · OEt₂): $\Lambda = 87$ cm² · $\Omega^{-1} \cdot mol^{-1}$.

C₁₅H₂₇CoF₆O₇P₂ (554.2) Ber. C 32.50 H 4.91 Co 10.63 Gef. C 33.00 H 4.86 Co 10.60

(Cyclopentadienyl) (ethoxycarbonyl) (methoxycarbonyl) (trimethylphosphan) cobalt (111) (15): Eine Suspension von 173 mg (0.40 mmol) 12 in 5 ml Ethanol und 5 ml Ether wird mit einem Überschuß (ca. 1.0 mmol) KOH versetzt. Nach 30 min Rühren bei Raumtemp. werden die flüchtigen Bestandteile i. Vak. entfernt und der Rückstand zweimal mit je 20 ml Pentan unter Erwärmen und Rückfluß extrahiert. Die Pentanlösung wird heiß filtriert, i. Vak. auf ca. 3 ml eingeengt und auf -78 °C gekühlt. Es bilden sich leuchtendgelbe, luftempfindliche Kristalle, die abfiltriert, mit kaltem Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 70 mg (52%). - MS: m/z (I_r %) = 332 (3; M⁺), 304 (9; M⁺ - CO), 273 (2; M⁺ - CO₂Me), 259 (3; M⁺ - CO₂Et), 256 (3; M⁺ - PMe₃), 200 [100; C₅H₃Co(PMe₃)⁺], 135 [20; Co(PMe₃)⁺], 124 (32; C₅H₃Co⁺).

```
C<sub>13</sub>H<sub>22</sub>CoO<sub>4</sub>P (332.3) Ber. C 47.00 H 6.67 Co 17.74
Gef. C 46.66 H 6.79 Co 17.87
```

(Cyclopentadienyl) iodo (methoxycarbonyl) (trimethylphosphan)cobalt (111) (19): Eine Suspension von 130 mg (0.30 mmol) 12 in 5 ml THF wird mit 300 mg (2.0 mmol) NaI versetzt und 1 h bei Raumtemp. gerührt. Die Farbe schlägt dabei von Gelb nach Braun um. Nach Abziehen der flüchtigen Bestandteile i. Vak. wird der Rückstand zweimal mit je 10 ml Benzol extrahiert. Die Benzol-Lösung wird filtriert, i. Vak. auf ca. 3 ml eingeengt und mit 20 ml Pentan versetzt. Es bilden sich dunkelbraune Kristalle, die mit Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 79 mg (68%), Schmp. 88 °C (Zers.). – MS: m/z (I_r %) = 386 (14; M⁺), 327 (42; $M^+ - CO_2Me$, 251 (15; C₅H₅CoI⁺), 228 [9; C₅H₅Co(CO)PMe₃⁺], 200 [100; C₅H₅Co(PMe₃)⁺], 135 [27; Co(PMe₃)⁺], 124 (63; C₅H₅Co⁺).

C₁₀H₁₇CoIO₂P (386.1) Ber. C 31.11 H 4.44 Co 15.27 Gef. C 30.54 H 4.10 Co 15.61

Darstellung der Komplexe $[C_3H_3Co(CO_2Me)(PMe_3)L]PF_6$ (20 bis 23): Eine Lösung von 130 mg (0.30 mmol) 12 in 2 ml Aceton wird mit 0.40 mmol L [P(OMe)₃, CNMe, CN-*p*-Tol, CNPh] versetzt und 1 h bei Raumtemp. gerührt. Nach Zugabe von 25 ml Ether bildet sich ein orangefarbener Niederschlag, der nach Dekantieren des Lösungsmittels aus Aceton/Ether umkristallisiert wird. Im Fall von 22 und 23 muß die Umkristallisation mindestens zweimal wiederholt werden, um die anhaftenden Reste des Isonitrils vollständig zu entfernen. Ausb. 138 mg (87%) 20; 111 mg (83%) 21; 119 mg (76%) 22; 112 mg (74%) 23.

(Cyclopentadienyl)(methoxycarbonyl)(trimethylphosphan)(trimethylphosphit)cobalt(III)-hexafluorophosphat (20): Zers.-P. 69 °C. $\Lambda = 93 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{c} C_{13}H_{26}CoF_6O_5P_3 \ (528.2) \\ \text{Gef.} \ C \ 29.56 \ H \ 4.96 \ Co \ 11.16 \\ \text{Gef.} \ C \ 28.98 \ H \ 4.72 \ Co \ 11.38 \end{array}$

(Cyclopentadienyl)(methoxycarbonyl)(methylisonitril)(trimethylphosphan)cobalt(III)-hexafluorophosphat (21): Zers.-P. 150°C. $\Lambda = 83 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{c} C_{12}H_{20}CoF_6NO_2P_2 \ (445.2)\\ \text{Ber. C } 32.38 \ H \ 4.53 \ Co \ 13.24 \ N \ 3.15\\ \text{Gef. C } 32.53 \ H \ 4.39 \ Co \ 13.74 \ N \ 2.95 \end{array}$

(Cyclopentadienyl)(methoxycarbonyl)(p-tolylisonitril)(trimethylphosphan)cobalt(III)-hexafluorophosphat (22): Zers.-P. 98°C. $\Lambda = 80 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{c} C_{18}H_{24}CoF_6NO_2P_2 \ (521.3)\\ \text{Ber. C } 41.48 \ H \ 4.64 \ Co \ 11.31 \ N \ 2.69\\ \text{Gef. C } 41.12 \ H \ 4.46 \ Co \ 11.45 \ N \ 2.46 \end{array}$

Tab. 2. Ausgewählte Bindungsabstände (pm) und -winkel (°) in 2 (M =Schwerpunkt des C₅H₅-Rings)

*Mittle	erer C-C-Abs	tand im C₅	H₅-Ring.		M-Co-P M-Co-P	:	M-Co-C1 M-Co-C2	123.3 110.5
					Interplanarwinkel			
03-C3	145.3(4)	C-C _{Cp} *	141.3					
C1-03	136.8(4)	C12-C8	141.0(5)					
C1-01	120.9(4)	C11-C12	141.5(5)	C5-P-C6	103.0(2)		C2-04-C4	115.1(3)
Co-M	172.3	C10-C11	141.4(5)	Co-P-C7	114.0(1)		61-03-63	115.3(3)
Co-C12	211.1(4)	C9-C10	140.8(5)	Co-P-C6	117.0(1)		02-C2-04	119.1(3)
Co-C11	210.6(4)	C8-C9	141.6(5)	Co-P-C5	115.4(1)		Co-C2-04	110.9(2)
Co-C10	210.0(4)	P-C7	100.3(4)	C1-Co-C2	89.7(2)		Co-C2-02	130.0(3)
Co-C9	208.2(4)	P-C6	181.5(4)	P-Co-C2	89.4(1)		01-C1-03	119.0(3)
Co-C8	210.3(4)	P-C5	180.8(4)	P-Co-C1	91.1(1)		Co-C1-03	112.2(2)
Co-C2	190.7(4)	04-C4	144.0(4)	M-Co-C2	124.1		Co-C1-01	128.7(3)
Co-C1	191.2(4)	C2-04	137.9(4)	M-Co-C1	125.5		C6-P-C7	103.4(2)
Co-P	217.3(1)	C2-02	120.9(4)	M-Co-P	126.1		C5-P-C7	102.2(2)

(Cyclopentadienyl)(methoxycarbonyl)(phenylisonitril)(trimethylphosphan)cobalt(III)-hexafluorophosphat (23): Zers.-P. 74°C. $\Lambda = 83 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}.$

> $C_{17}H_{22}CoF_6NO_2P_2$ (507.3) Ber. C 40.23 H 4.37 Co 11.62 N 2.76 Gef. C 39.93 H 4.64 Co 11.79 N 3.26

Carbonyl (cyclopentadienyl) [(diethylamino) carbonyl] (trimethylphosphan)cobalt(III)-hexafluorophosphat (25): Eine Lösung von 173 mg (0.40 mmol) 12 in 5 ml Methanol wird mit einem Überschuß von Diethylamin (ca. 3.0 mmol) versetzt und 2 h bei Raumtemp. gerührt. Nach Entfernen der flüchtigen Bestandteile i. Vak. wird der Rückstand zweimal mit je 3 ml Aceton extrahiert. Die Aceton-Lösung wird filtriert, i. Vak. auf ca. 2 ml eingeengt und mit 25 ml Ether versetzt. Es bilden sich orangerote Kristalle, die mit Ether gewaschen und i. Vak. getrocknet werden. Ausb. 125 mg (66%), Zers.-P. $87^{\circ}\mathrm{C}, \Lambda = 95 \mathrm{cm}^2 \cdot \Omega^{-1} \cdot \mathrm{mol}^{-1}.$

> $C_{14}H_{24}CoF_6NO_2P_2$ (473.2) Ber. C 35.53 H 5.12 Co 12.45 N 2.96 Gef. C 35.08 H 5.22 Co 12.51 N 2.60

Tab. 3. Atomparameter von 2. $B_{eu} = \exp(-B\sin^2\Theta/\lambda^2)$

Atom	x/a	y/b	z/c	Beq
Co	0.35862(3)	0.32330(3)	0.38140(3)	1.55
P	0.20827(7)	0.28170(7)	0.40680(6)	1.72
01	0.34788(18)	0.12247(18)	0.37580(18)	2.36
02	0.43409(19)	0.27145(20)	0.55493(17)	2.92
03	0.49699(17)	0.18364(17)	0.36533(16)	2.03
04	0.33009(19)	0.39364(18)	0.55242(16)	2.40
C1	0.39813(26)	0.19309(26)	0.37513(23)	1.81
C2	0.38213(25)	0.32250(27)	0.50969(24)	1.91
C3	0.53216(28)	0.08651(26)	0,35766(25)	2.35
C4	0.34187(29)	0.39806(29)	0.64997(25)	2.62
C5	0.14981(26)	0.21684(27)	0.31532(24)	2.10
C 6	0.18571(27)	0.20721(28)	0.50575(25)	2.30
C7	0.12611(26)	0.38041(27)	0.42323(27)	2.35
C8	0.42527(29)	0.45774(25)	0.37323(25)	2.26
C9	0.47983(26)	0.38946(26)	0.32379(24)	2.16
C10	0.42020(28)	0.35368(26)	0.25341(25)	2.25
C11	0.32786(27)	0.39813(26)	0.26027(26)	2.34
C12	0.33128(27)	0.46259(25)	0.33429(27)	2.29

Röntgenstrukturanalyse von 2²⁶: Geeignete Einkristalle wurden durch langsames Abkühlen einer Toluol/Pentan-Lösung erhalten. Kristallabmessungen: $0.10 \times 0.55 \times 0.30$ mm. Zelldaten: Orthorhombisch, a = 1369.7 (2), b = 1406.5 (2), c = 1465.4 (2) pm, V = $2823 \cdot 10^6 \text{ pm}^3$. Raumgruppe Pbca (Z = 8), $d_r = 1.50 \text{ gcm}^{-3}$. Auf einem Vierkreisdiffraktometer Syntex P21 wurden bei -148°C 2487 unabhängige Reflexe ($5^{\circ} \leq 2\Theta \leq 50^{\circ}$) gemessen (Mo- K_{α} -Strahlung, $\lambda = 71.069$ pm, Graphit-Monochromator, ω -scan, Lorentz- und Polarisationskorrektur). Die Lösung der Struktur erfolgte nach der Patterson-Methode (Syntex XTL). Die Lagen aller Wasserstoffatome wurden Differenz-Fourier-Synthesen entnommen, jedoch nicht verfeinert. Verfeinerung der Nicht-Wasserstoffatome nach der Methode der kleinsten Quadrate mit der vollständigen Matrix mit anisotropen Temperaturfaktoren (Atomformfaktoren für ungeladene Atome aus International Tables) konvergierte gegen $R_1 = 0.043$ und $R_2 = 0.044$ für 2185 Strukturfaktoren ($F_0 \ge$ $3.0\sigma(F_o)$). Bindungsabstände und -winkel sind in Tab. 2, die Atomparameter der Nicht-Wasserstoffatome in Tab. 3 angegeben.

CAS-Registry-Nummern

1: 66652-86-6 / 2a: 106193-27-5 / 9: 106193-28-6 / 10: 106193-29-7 / 11: 106193-30-0 / 12: 106193-32-2 / 13: 106193-34-4 / 14: 106193-36-6 / 15: 106193-37-7 / 19: 89199-37-1 / 20: 106193-39-9 / 21: 106193-41-3 / 22: 106193-43-5 / 23: 106193-45-7 / 25: 106193-37-7 / 25: 106147-9 / C₅H₅Co(CO)PMe₂Ph: 32800-45-6 / C₅H₅Co(CO)P(OMe)₃: 79018-69-2

- ¹⁾ LIX. Mitteilung: H. Werner, H. Otto, Chem. Ber. 119 (1986) 3866.
- ²⁾ H. Berke, R. Birk, G. Huttner, L. Zsolnai, Z. Naturforsch., Teil B, 39 (1984) 1380
- ³⁾ L. Hofmann, H. Werner, Chem. Ber. 118 (1985) 4229
- L. Hofmann, H. Werner, J. Organomet. Chem. 289 (1985) 141.
 W. Paul, H. Werner, Angew. Chem. 95 (1983) 333; Angew. Chem.
- Int. Ed. Engl. 22 (1983) 316; Angew. Chem. Suppl. 1983, 396. ⁶⁹ H. Werner, W. Paul, R. Feser, R. Zolk, P. Thometzek, Chem. Ber. 118 (1985) 261.
- 71 7a) P. Pino, F. Piacenti, M. Bianchi in Organic Synthesis via Metal Carbonyls, Ed. I. Wender, P. Pino, Vol. 2, S. 43, Wiley-Inter-science, New York 1977. – ^{7b)} J. Falbe, New Syntheses with Carbon Monoxide, S. 226, Springer Verlag, Berlin 1980. – ^{7cl} M. Röper, H. Loevenich in *Catalysis in C₁ Chemistry*, Ed. W. Keim, S. 105, D. Reidel Publishing Comp., Dordrecht 1983. ^{8) 8a)} C. K. Rofer-DePoorter, *Chem. Rev.* 81 (1981) 447. – ^{8b)} M. ^{7c)} M.
- Röper in Catalysis in C, Chemistry, Ed. W. Keim, S. 41, D. Reidel Publishing Comp. Dordrecht 1983.
 ⁹ A. Spencer, H. Werner, J. Organomet. Chem. 171 (1979) 209.
 ¹⁰ L. Hofmann, H. Werner, J. Organomet. Chem. 255 (1983) C41.
 ¹¹⁰ M. Tasi, G. Palyi, XI. International Conference on Organomet restation of Papers
- metallic Chemistry, Callaway Gardens 1983, Abstr. of Papers S. 140. ^{11b)} M. Tasi, G. Palyi, Organometallics 4 (1985) 1523.
- ^{12]} H. Hoberg, F. J. Fananás, H. J. Riegel, J. Organomet. Chem. 254 (1983) 267
- ⁽³⁾ J. M. O'Gorman, W. Shand, V. Schomaker, J. Am. Chem. Soc. 72 (1950) 4220.
- ¹⁴⁾ P. L. Burk, D. v. Engen, K. S. Campo, Organometallics 3 (1984) 493.
- ¹⁵⁾ T. S. Coolbaugh, B. D. Santarsiero, R. H. Grubbs, J. Am. Chem.
- Soc. 106 (1984) 6310.
 ¹⁶⁰ V. G. Albano, P. L. Bellon, M. Sansoni, *Inorg. Chem.* 8 (1969) 298. ¹⁶⁶⁰ P. L. Bellon, M. Manassero, F. Porta, M. Sansoni, J. Organomet. Chem. 80 (1974) 139. ¹⁷⁾ W. A. Herrmann, I. Steffl, M. L. Ziegler, K. Weidenhammer,
- Chem. Ber. 112 (1979) 1731
- ¹⁸⁾ Ch. Burschka, K. Leonhard, H. Werner, Z. Anorg. Allg. Chem. 464 (1980) 30.
- ¹⁹⁾ H. Werner, O. Kolb, U. Schubert, K. Ackermann, J. Organomet. Chem. 240 (1982) 421
- ²⁰⁾ B. Heiser, A. Kühn, H. Werner, Chem. Ber. 118 (1985) 1531.
- ²¹⁾ F. B. McCormick, R. J. Angelici, Inorg. Chem. 20 (1981) 1111
- 22) H. Werner, B. Heiser, Ch. Burschka, Chem. Ber. 115 (1982) 3069.
- ²³⁾ A. Spencer, H. Werner, J. Organomet. Chem. 171 (1979) 219.
- ²⁴⁾ A. J. Hart-Davis, W. A. G. Graham, Inorg. Chem. 9 (1970) 2658.
- ²⁵⁾ H. Werner, B. Juthani, J. Organomet. 209 (1981) 211.
- ²⁶⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 52151, des Autors und des Zeitschriftenzitats angefordert werden.

[246/86]